On some curves in three-dimensional $$\beta $$-Kenmotsu manifolds
نویسندگان
چکیده
Abstract This paper is devoted to examine necessary and sufficient conditions for a Frenet curve be f -harmonic, -biharmonic, bi- -harmonic -biminimal in three-dimensional $$\beta $$ β -Kenmotsu manifolds. In addition, such are investigated slant curves.
منابع مشابه
Harmonic Maps on Kenmotsu Manifolds
We study in this paper harmonic maps and harmonic morphisms on Kenmotsu manifolds. We also give some results on the spectral theory of a harmonic map for which the target manifold is a Kenmotsu manifold.
متن کاملOn 3-dimensional Almost Kenmotsu Manifolds Admitting Certain Nullity Distribution
The aim of this paper is to characterize 3-dimensional almost Kenmotsu manifolds with ξ belonging to the (k, μ)′-nullity distribution and h′ 6= 0 satisfying certain geometric conditions. Finally, we give an example to verify some results.
متن کاملOn Lightlike Geometry in Indefinite Kenmotsu Manifolds
We investigate some geometric aspects of lightlike hypersurfaces of indefinite Kenmotsu manifolds, tangent to the structure vector field, by paying attention to the geometry of leaves of integrable distributions. Theorems on parallel vector fields, Killing distribution, geodesibility of those leaves are obtained. The geometrical configuration of such lightlike hypersurfaces and leaves of its sc...
متن کاملEta-Ricci solitons on para-Kenmotsu manifolds
In the context of paracontact geometry, η-Ricci solitons are considered on manifolds satisfying certain curvature conditions: R(ξ,X) · S = 0, S · R(ξ,X) = 0, W2(ξ,X) · S = 0 and S · W2(ξ,X) = 0. We prove that on a para-Kenmotsu manifold (M,φ, ξ, η, g), the existence of an η-Ricci soliton implies that (M, g) is quasi-Einstein and if the Ricci curvature satisfies R(ξ,X) · S = 0, then (M, g) is Ei...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Arabian Journal of Mathematics
سال: 2022
ISSN: ['2193-5343', '2193-5351']
DOI: https://doi.org/10.1007/s40065-022-00405-w